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The maximum entropy formalism is used to investigate the growth of entropy
(H-theorem) for an isolated system of hard spheres in an external potential
under general boundary geometry. Assuming that only correlations of a finite
number of particles are controlled and the rest maximizes entropy, we obtain an
H-theorem for such a system The limiting cases such as the modified Enskog
equation and linear kinetic theory are discussed.
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1. INTRODUCTION

The main problem in the nonequilibrium statistical mechanics is to find
an appropriate model of dissipation. Microscopic equations of motion are
reversible in time but macroscopic behavior of physical systems is rather
irreversible. Therefore we must include dissipation in the microscopic
description of systems. To be sure that we have constructed an irreversible
dynamics we should have an indicator of irreversibility, a function of the
state of the system that is monotonic in time. In the macroscopic descrip-
tion we can use entropy. Due to Gibbs (1) and Shannon (2) we can also define
entropy in the statistical description. The reversible microscopic dynamics
makes Shannon–Gibbs entropy constant in time (3, 4) unless we break the
reversibility. We shall present such a broken dynamics that leads to the
monotonic growth of entropy warranted by H-theorem. (5) We shall apply
the most natural maximum entropy formalism (MEF) presented in
refs. 4–7 to a system of identical hard spheres.

The mechanism of the growth of entropy is outlined in refs. 6 and 10.
We assume that the evolution of l first reduced distribution functions is



governed by Bogolubov–Born–Green–Kirkwood–Yvon (BBGKY) hierarchy
equations. (11) Due to MEF the distribution functions Fl+1, Fl+2,... are
determined by F1 · · · Fl. Note that this procedure has been already used for
some kinetic variational theories. (6) The case l=1—the Enskog equa-
tion—was analyzed by Resibois (12) and the linear kinetic theory (LKT) of
hard spheres was investigated by Bławzdziewicz et al. (13) Smooth potentials
were investigated in ref. 8 but positive entropy production there is only due
to the hard core. In addition to the Enskog equation and LKT we con-
struct a set of kinetic equations describing the evolution of correlations
(l=2). The H-theorems presented here contains two novel features besides
arbitrary l. The global theorem allows arbitrary boundary conditions and
external field. The local entropy density is well defined for systems with
phase transitions contrary to standard definition. (14)

In Section 2 basic definitions are given. Section 3 contains evolution
equations for hard spheres. In Sections 4 and 5 global and local
H-theorems for hard spheres are presented, respectively. Limiting cases like
revised Enskog equation and LKT are explained in Sections 6 and 7,
respectively. New kinetic equations including correlations are given in
Section 8. Section 9 is devoted to discussion and conclusions.

2. BASIC CONCEPTS

A system of n particles is represented by a set of phases x1 · · · xn where
the phase x i=(ri, pi) represents the position ri and momentum pi of a
particle i, respectively. We shall consider systems with a floating number of
particles so n is not fixed. For the convenience we shall write i instead of xi.
Another frequently used symbol will be boldface m to denote a set of m
phases. If two different sets i and j appear then i+j is a set of i+j phases.
Similarly, i+j denotes a set of phases i and one phase j and i − j denotes a
set of phases i without one phase j.

The probability density of finding exactly n particles in a phase space
point n={1 · · · n} is r(n) Any permutation of particles leads to the same
state since particles are identical. Therefore r must be a symmetrical func-
tion of phases. The average of a phase function (a series of functions)
A={A(n), n \ 0} is calculated as

OAP= C
.

n=0
F dn r(n) A(n) — C

.

n=0
F dn rnAn (2.1)

where dn — d1 · · · dn/n! denotes integration over all canonical coordinates
of phases, that is

F di=h−3 F d3ri F d3pi, (2.2)
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where h is the Planck’s constant. We shall write rn and An instead of r(n)
and A(n) whenever it is unambiguous. The probability distribution must
satisfy normalization

C
.

n=0
F dn rn=1. (2.3)

Reduced distribution functions are defined as

F(m)= C
.

n=0
F dn r(n+m). (2.4)

Due to the normalization condition (2.3) we have

F0=1. (2.5)

One may interpret the distribution function F(m) as average

F(m)=Of(m)P (2.6)

of the microscopic density f(m) which for n particle phase space point n is
given as

f(m | n)= C
mŒ ı n

d(m − mŒ) (2.7)

where the summation runs over all different m-particle sequences. The
expansion of multidelta is

d(m − mŒ)=d(1 − 1Œ) · · · d(m − mŒ), d(i − iŒ)=h3d(ri − riŒ) d(pi − piŒ).
(2.8)

The relation between r and F can be inverted

r(n)= C
.

m=0
(−1)m F dm F(n+m). (2.9)

However not all systems of functions Fn are allowed since they must give a
nonnegative probability distribution. Averages of cluster functions

A(n)=a0+C
i ¥ n

a(i)+C
i > j

a(ij)+ · · · = C
m ı n

a(m) (2.10)
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are expressed by distribution functions

OAP= C
.

m=0
F dm amFm. (2.11)

We will consider hard spheres of diameter d. The probability density
of an overlapping of the hard spheres is zero. and we shall take this into
account by introducing the overlap function Wn defined as

W(n)=D
i > j
ij ¥ n

W(ij), W(ij)=h(rij − d)=˛1 if rij \ d

0 if rij < d
(2.12)

and rij=ri − rj, rij=|rij |. Now we can introduce a smooth continuation of
r to the overlap configurations r̃ defined by

rn=Wn r̃n. (2.13)

We define functions c(n) for n > 0 and a number k — c0 by the system of
relations

ln r̃(n)=−k − C
m ı n

c(m), (2.14)

for example

ln r̃0=−k,

ln r̃(1)=−k − c(1), (2.15)

ln r̃(12)=−k − c(1) − c(2) − c(12).

The quantity k is a functional of c i due to the normalization condition
(2.3)

k=k[c i; i > 0]. (2.16)

The Shannon–Gibbs entropy is defined as (1, 2)

S=− C
.

n=0
F dn rn ln rn (2.17)

where we set kB=1 to have entropy dimensionless and in agreement with
Boltzmann function H=−S. However, to avoid singular terms 0 ln 0 for
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overlapping configurations, the entropy of hard spheres is better expressed
as

S=− C
.

n=0
F dn rn ln r̃n (2.18)

due to Eq. (2.13). The above relation can be rewritten in the form contain-
ing the distribution functions, the group functions c i, i > 0 and the func-
tional k, using Eq. (2.11)

S=k+ C
.

m=1
F dm Fmcm. (2.19)

The equilibrium state is described by grand canonical distribution. It is
such a probability distribution that at fixed average energy U and average
number of particles N

U=F d1 (p2
1/2M+f(r1)) F(1), (2.20)

N=F d1 F(1) (2.21)

gives maximal possible entropy. (15) It is then fully described by (see
Appendix A)

kBTc(r, v)=f(r)+Mv2/2 − m, c i=0 for i > 1 (2.22)

where T is the temperature and m is the chemical potential. If the particles
interact by a pair potential f2(rij) or more generally a many-body potential
fn then we add kBTc2=f2 or kBTcn=fn, respectively.

Finally, in the equilibrium

S −
U

kBT
+

mN
kBT

=k=
pV
kBT

, (2.23)

where p is the pressure and V is the volume of the system. The entropy
S(U, V, N) is finite. (16)

The many-body potentials have a group property, i.e., f(n) tends to
zero if rij Q . for any pair i, j ¥ n. We shall assume that the group prop-
erty is preserved for cn also in nonequilibrium states.
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3. DYNAMICS OF HARD SPHERES

We shall analyze the dynamics of hard spheres of diameter d and mass M.
The evolution consists of elastic collisions and smooth movements between
collisions. A set of n particles at time t is described by phases n(t; n0) where
n0 denotes the initial phases at time 0. Between collisions the phases change
according to Newton’s laws

dri

dt
=vi,

dpi

dt
=−

“f(ri)
“ri

(3.1)

where v=p/M is a velocity. When spheres i and j collide then the veloci-
ties vi and vj turn into v −

i and v −

j, respectively according to the elastic colli-
sion law

v −

i=vi − (vij · r̂ij) r̂ij,

v −

j=vj+(vij · r̂ij) r̂ij,
(3.2)

where vij=vi − vj, r̂ij=rij/rij. The same relation holds if v −

i and v −

j are the
velocities of colliding particles turning into vi and vj, respectively, with
fixed r̂ij.

Averages given by Eq. (2.1) change in time according to the evolution
of particles

OA(t)P= C
.

n=0
F dn0 A(n(t; n0)) r(n0)= C

.

n=0
F dn A(n) r(n(−t; n0)). (3.3)

We define the evolution operator Sa acting on functions vanishing for
overlapping spheres by

Sa (t) f(n0)=f(n(t; n0)). (3.4)

The evolution of the probability distribution r is given by

r(n; t)=Sa (−t) r(n, 0). (3.5)

The pseudo-Liouville equation for r is

“tr=−L̄±r for + t > 0 (3.6)

where L̄± is defined by

d
dt

Sa (± t)=± L̄±Sa (± t), t > 0. (3.7)
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The explicit form of L̄± is

L̄±(n)=C
i ¥ n

vi ·
“

“ri
− C

i ¥ n

“f(ri)
“ri

·
“

“pi
± C

i > j
Ta±(ij) (3.8)

where the pseudo-operator Ta±(ij) is defined as (22–25)

Ta±(ij)=d(rij − d+) |vij · r̂ij | {h(+ vij · r̂ij) bij − h(± vij · r̂ij)}, (3.9)

and the operator bij turns i th and jth velocities in a function on its right
according to the elastic collision law (3.2)

bij f(..., ri, vi,..., rj, vj,...)=f(..., ri, v −

i,..., rj, v −

j,...). (3.10)

The Dirac d-function is taken at rij=d+, where d+=d+|E|, E Q 0.
It is more convenient to work with the evolution equations for the

distribution functions, namely the BBGKY hierarchy for hard spheres. (25)

It follows from the definition (2.4) of F and Liouville equation (3.6) and
for t > 0 has the form

{“t+L̄− (m)} F(m)= C
i ¥ m

F d(m+1) Ta− (i, m+1) F(m+1), m=1, 2,... .
(3.11)

We define also an operator S acting on functions continuous at
overlapping configurations by

SaW=WS. (3.12)

We can write then the evolution equation for r̃ as

r̃(n; t)=S(−t) r̃(n, 0) (3.13)

valid only for non-overlapping configurations that lead to the equation

“t r̃=−L± r̃ for + t > 0 (3.14)

where L± is defined as

d
dt

S(± t)=± L±S(± t), t > 0 (3.15)

and has the property

L̄±W=WL±. (3.16)
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Its explicit form is

L±(n)=C
i ¥ n

vi ·
“

“ri
− C

i ¥ n

“f(ri)
“ri

·
“

“pi
± C

i > j
T±(ij), (3.17)

where

T±(ij)=d(rij − d+) |vij · r̂ij | h(+ vij · r̂ij)(bij − 1). (3.18)

Operators T and Ta are also related by the following property

F di dj u(i, j) T±(ij) w(i, j)=F di dj w(i, j) Ta+ (ij) u(i, j) (3.19)

for arbitrary functions u and w. To prove the above one should use the
exchange of integration variables vi, vj Y v −

i, v −

j, and properties following
from the collision law (3.2): v'

i =vi, v'

j =vj, dvi dvj=dv −

i dv −

j, and rij · v −

ij=
−rij · vij. The last leads to

· · · h(± vij · r̂ij) bij · · · = · · · bijh(+ vij · r̂ij) · · · (3.20)

at fixed ri, rj (see also refs. 23 and 24).

4. GLOBAL H-THEOREM

Let us consider only l first equations in the hierarchy (3.11). To close
the set of equation we express Fl+1 functionally by F1 · · · Fl by construction
of such a probability distribution that at fixed F1 · · · Fl has maximum pos-
sible entropy (see Appendix A). The result is that the probability distribu-
tion r as well as distribution functions F are described either by F1 · · · Fl or
by c1 · · · c l and

cm=0 for m=l+1, l+2,... . (4.1)

Hence distribution functions Fm, m > l are not arbitrary and must depend
functionally on F1 · · · Fl. The above relations, though formal, have a
graphical interpretation by (generalized) Mayer graphs as shown in
refs. 19–21. We shall assume that the considered system is isolated.

The expression for the change of entropy is

dS
dt

=− C
.

n=0
F dn(rn“t ln r̃n+ln r̃n “trn). (4.2)
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The first term vanishes from the normalization condition (2.3) and the rest
can be collected similarly as in Eq. (2.19)

dS
dt

= C
l

m=1
F dm cm “tFm. (4.3)

We obtain from BBGKY hierarchy (3.11)

dS
dt

=− C
l

m=1
F dm cm C

i ¥ m

vi ·
“Fm

“ri
+ C

l

m=1
F dm cm C

i ¥ m

“f(ri)
“ri

·
“Fm

“pi

+ C
l

m=2
dm cm C

i > j
Ta− (ij) Fm+ C

l

m=1
F dm d1 cm C

i ¥ m
Ta− (i1) Fm+1. (4.4)

Firstly, let us consider the first term on the right hand side in the above
equation (free streaming). As shown in Appendix B it is equal

− C
l

m=1
F dm cm C

i ¥ m

vi ·
“Fm

“ri
=F d2 d(r12 − d+) v12 · r̂12F2. (4.5)

The next term in Eq. (4.4) (potential term) is

C
l

m=1
F dm cm C

i ¥ m

“f(ri)
“ri

·
“Fm

“pi
=0, (4.6)

because contrary to the free streaming there are no boundary terms in
momentum. The last two terms in Eq. (4.4) can be written with help of
Eq. (3.19) as

C
l

m=2
F dm cm C

i > j
Ta− (ij) Fm+ C

l

m=1
F dm d1 cm C

i ¥ m
Ta− (i1) Fm+1

= C
l+1

m=2
F dm F(m) C

i > j
T+(ij){c(m)+c(m − i)+c(m − j)} (4.7)

where c l+1=0.
We are ready to prove the announced H-theorem. As shown in

Appendix B, the right hand side of Eq. (4.7) can be written in the form

− C
.

n=2
F dn C

i > j
d(rij − d+) |vij · r̂ij | h(−vij · r̂ij) Wn r̃(n) ln

r̃(nŒ)
r̃(n)

, (4.8)
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where nŒ={1 · · · iŒ · · · jŒ · · · n} with v −

i and v −

j given by the collision law (3.2).
We apply the inequality

x ln
y
x

[ y − x (4.9)

to x=r̃(n) and y=r̃(nŒ). Finally we get

− C
.

n=2
F dn rn C

i > j
T+(ij) ln r̃n

\ C
.

n=2
F dn C

i > j
d(rij − d+) |vij · r̂ij | h(−vij · r̂ij)(r(n) − r(nŒ))

=−F d2 d(r12 − d+) v12 · r̂12F2. (4.10)

The term on the right hand side in the above equation cancels exactly the
right hand side in Eq. (4.5) so that

dS
dt

\ 0. (4.11)

In the isolated system the average number of particles and energy (see
Eqs. (2.20) and (2.21)) are conserved since from BBGKY hierarchy (3.11)
we have

dN
dt

=F d1
“

“r1
· (v1F1) (4.12)

dU
dt

=F d1
“

“r1
· (F(1) v1 p2

1/2M)+F d2 F(12) T+(12) Mv2
1/2. (4.13)

Due to symmetry, we can exchange 1 Y 2 in the latter equation and the
last term vanishes because T+(12)(v2

1+v2
2)=0. The boundary terms vanish

because F(v+ )=F(−v+ ) for component v+ perpendicular to the boundary
of the isolated system. Hence, N and U are constant and the entropy must
reach the maximum which does not exceed the entropy of the Gibbs state
(2.22).

Let us find a condition for equilibrium states. Such states are charac-
terized by the condition

dS
dt

=0 (4.14)
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and

“Fm

“t
=0, m [ l. (4.15)

It follows from the inequality (4.9) that (4.14) holds only if

ln r̃(n)=ln r̃(nŒ) for rij=d, (4.16)

or equivalently, using the expansion (2.14)

c(m+iŒ+jŒ)+c(m+iŒ)+c(m+jŒ)

=c(m+i+j)+c(m+i)+c(m+j) for rij=d, m < l (4.17)

for all non-overlapping configurations. The time derivatives of F are
related to the time derivatives of c by

“tFk=− C
m > 0

F dm Qkm “tcm (4.18)

where the operator Q is defined by functional derivatives of F or k (17, 18)

(see also Appendix A)

Qkm=−
dFk

dcm
=

d2k

dck dcm
. (4.19)

It is proved in Appendix C that due to Eq. (4.17) we can rewrite BBGKY
hierarchy (3.11) in the form

“tFk=C
m

F dm Qkm L0, mcm for 0 < k [ l (4.20)

where

L0(m)= C
i ¥ m

1vi ·
“

“ri
−

“f(ri)
“ri

·
“

“pi

2 . (4.21)

We subtract Eq. (4.18) from (4.20) and integrate with (“t+L0, k) ck. The
result is

C
k, m

F dk dm(“tck+L0, kck) Qkm(“tcm+L0, mcm)=0. (4.22)
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Since Q is a positive definite operator (see Appendix A) cm must satisfy
Liouville equation, namely

“tcm+L0, mcm=0 for 0 < m [ l. (4.23)

Due the condition

“tFk=0 for 0 < k [ l (4.24)

and positive definiteness of Q we arrive at stationary Liouville equation

L0, mcm=0 for 0 < m [ l. (4.25)

We consider the case m=0 and l=1 in Eq. (4.17), i.e.,

c(1)+c(2)=c(1Œ)+c(2Œ), r12=d. (4.26)

It is shown in Appendix C that the above equality implies

kBTc(r, v)=Mv2/2+Mb · v+M(c × r) · v − m(r) (4.27)

where T is a constant kinetic temperature (kBT=OMv2/2P), b and c are
constants and m is an intrinsic chemical potential (14) depending on the posi-
tion only. Due to Eqs. (2.4) and (2.14) there exists a functional relation
between m(r) and density profile n(r) defined as

n(r)=h−3 F d3p F(r, p). (4.28)

In the case m=1 Eq. (4.25) reads

v ·
“m

“r
=

“f

“r
· (v+b+c × r). (4.29)

Since v is an independent vector we obtain b=c=0 if f ] const and

kBTc(r, v)=f(r)+Mv2/2 − m or m(r | n)+f(r)=const. (4.30)

If f is invariant under some translation or rotation then the momentum
term b · v or the angular momentum term (c × r) · v need not be zero.
However, we can always take another reference system where they are
equal to 0.

We take m=l − 1 in a general case so that Eq. (4.17) gives

c(m+i)+c(m+j)=c(m+iŒ)+c(m+jŒ), rij=d. (4.31)
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We can use the result (C.25) keeping the phases m constant. (13) Then a, b,
and c depend only on the phases m. Hence, they must be zero from the
group property and c(m+i) is a function of the position of i and by sym-
metry a function of positions of all phases only. Then Eq. (4.31) can be
used for m=l − 2 and so on. The conclusion is that c(m)=c(r1,..., rm) for
m > 1. It follows from the Liouville equation (4.25) that cm is a constant
and finally cm=0 for m > 1 from the group property.

We stress that obtained Gibbs states are described by a constant
chemical potential. Therefore coexistence of many phases with the same
chemical potential and different densities is allowed in general. For the
comparison Resibois proved only that the density is constant under perio-
dic boundary conditions and in absence of external potential. It was proved
that Eq. (4.30) leads to a stationary solution of Enskog equation. (26) Here
we proved that this is the only solution.

5. LOCAL H-THEOREM

We shall formulate the local H-theorem that local entropy production
is non-decreasing. (27, 28) Our purpose is to prove the following local entropy
balance equation for functions depending on one position variable r

“s(r, t)
“t

+
“

“r
· J(r, t)=s(r, t) \ 0 (5.1)

where functions s, J, and s depend on the state of the system, probability
distribution.

Firstly, we introduce some auxiliary notation. For any quantity X
dependent on the probability distribution determined by c1, c2,... we define
the quantity X(a) for a from 0 to . as

X(a)=X[c1(a), c2, c3,...], c1(a)=c1+a. (5.2)

Actually we shall use this formula for k(a), F1(a), and Q1m(a) where Q is
defined by Eq. (4.19). Then X(.)=0 and X(0)=X. Due to F1=−dk/dc1

(see Eq. (A.6)) we have

k=−F
.

0
da

dk(a)
da

=F
.

0
da F d1 F(1; a). (5.3)

The definition of s is

s(r)= C
m > 0

F dŒm Fmcm+F
.

0
da F dŒ1 F(1; a) (5.4)
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where

dŒm =
1
m

dm C
i ¥ m

d(ri − r). (5.5)

One can check that

F dr s(r)=S. (5.6)

In the case l=1 an alternative definition of entropy density is used in
refs. 8, 14, and 28

s̃(r)=h−3 F d3p F(r, p) 11 − ln F(r, p)+F
1

0
c(r | an1) da2 (5.7)

where n is given by Eq. (4.28) and c1=ln F1+c1 is a direct one point cor-
relation function. However an1 is not well defined if the phase transition
occurs and n1 cannot get arbitrary value due to the density gap. On the
contrary our definition (5.4) allows phase transitions since a corresponds to
the chemical potential which is continuous.

We will analyze the time evolution of s

“s
“t

= C
m > 0

F dŒm cm “tFm+ C
m > 0

F dŒm Fm “tcm

+ C
m > 0

F
.

0
da F dŒ1 dm

dF(1; a)
dcm

“tcm. (5.8)

Taking into account that dF1/dcm=−Q1m=−Qm1 and

F(m)=−F
.

0
da F d1

dF(m; a)
dc(1)

(5.9)

we obtain

“s
“t

= C
m > 0

F dŒm cm “tFm −
“

“r
· JA. (5.10)

The current JA is obtained from the useful identity

F drŒ[X(r, rŒ) − X(rŒ, r)]=−
“

“r
· JX (5.11)
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where

JX=F
1

0
dl F d3rŒ rŒX(r+lrŒ, r − (1 − l) rŒ). (5.12)

In our case

A(ra, rb)=−F
.

0
da F d1 dm C

i ¥ m

d(ra − r1) d(rb − ri)
m

Q1m(a) “tcm. (5.13)

We emphasize that “tcm is expressed by “tFk, k [ l from Eq. (3.11) by the
relation

“tcm= C
l

k=1
F dk

dcm

dFk
“tFk. (5.14)

The next term follows from BBGKY hierarchy for “tFm

C
m > 0

F dŒm cm C
i ¥ m

“f(ri)
“ri

·
“Fm

“pi
=F d3rŒ[B(r, rŒ) − B(rŒ, r)], (5.15)

B(ra, rb)= C
m > 0

F dm C
i ] j

d(rb − ri) d(ra − rj)
m

“f(ri)
“ri

·
“Fm

“pi
cm (5.16)

(see Appendix D). The free streaming term is (see Appendix D)

− C
m > 0

F dŒm cm C
i ¥ m

vi ·
“Fm

“ri
=−

“

“r
· Js −

“

“r
· JC+sC (5.17)

where the current Js is defined as

Js= C
m > 0

F dm C
i ¥ m

d(r − ri) vicmFm+F dŒ1 v1F1, (5.18)

and JC is defined by

C(ra, rb)= C
m > 0

F dm C
i ] j

d(ra − ri) d(rb − rj)
m

vi ·
“Fm

“ri
cm

+F d2 d(ra − r1) d(rb − r2) v1 · r̂12 d(r12 − d+) F2. (5.19)
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The potential term of entropy production is

sC=F dŒ2 v12 · r̂12 d(r12 − d+) F2. (5.20)

For the collision operator we have (compare Eq. (4.7))

C
m > 0

F dŒm d1 Fm+1 C
i ¥ m

T+(i1) cm

= C
m > 1

F dŒm Fm C
i ] j

T+(ij) c(m − j) −
“

“r
· JD (5.21)

where

D(ra, rb)= C
m > 0

F dm d1 Fm+1 C
ij ¥ m

d(rb − r1) d(ra − rj)
m(m+1)

T+(i1) cm. (5.22)

Finally adding up collision terms we arrive at

C
m > 0

F dŒm Fm C
i > j

T+(ij)[cm+c(m − i)+c(m − j)]=−
“

“r
· JE+sE (5.23)

where

E(ra, rb)= C
m > 1

F dm Fm C
ijk ¥ m

i > j

d(ra − rk)
d(rb − ri)+d(rb − rj)

2m

× T+(ij)[cm+c(m − i)+c(m − j)] (5.24)

sE=
1
2

C
m > 1

F dm Fm C
i > j

[d(r − ri)+d(r − rj)]

× T+(ij)[cm+c(m − i)+c(m − j)]. (5.25)

The quantities J and s appearing in Eq. (5.1) are found as

J=Js+JA+JB+JC+JD+JE, s=sC+sE. (5.26)
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Note that only Js is a real macroscopic current since the rest is due to the
microscopic non-local correlations. By expressing sC and sE by r̃ (see
Appendix D), we get

s= − 1
2 C

.

n=2
F dn Wn C

i > j
[d(r − ri)+d(r − rj)] (5.27)

× [r̃nT+(ij) ln r̃n − T+(ij) r̃n] \ 0. (5.28)

We have applied inequality (4.9) to x=r̃(n) and y=r̃(nŒ), similarly as in
Eq. (4.10).

6. REVISED ENSKOG EQUATION

In the previous sections we have developed a method of closing
BBGKY hierarchy for hard spheres. Here we show that in one special
limiting case (l=1) our formalism leads to the revised Enskog equation
(REE) used by Resibois. (12)

Cutting at l=1 means that ck=0 for k > 1 and the only evolution
equation is

3 “

“t
+v1 ·

“

“r1
−

“f(r1)
“r1

·
“

“p1

4 F(1)=F d2 Ta− (12) F(12). (6.1)

The above equation gives the evolution of F1 but contains F2. However
since ck=0 for k > 1 it is possible to express Fm for m > 1 as a functional
of F1. We shall find the form of this functional by writing Fm, given by
Eq. (2.4), in terms of c1

F(m)=X−1 D
j ¥ m

w(j) C
.

n=0
F dn Wn+m D

i ¥ n
w(i) (6.2)

where w(i)=exp{− c(i)} and

X=exp k= C
.

n=0
F dn Wn D

i ¥ n
w(i). (6.3)

Since there are no velocity correlations it is convenient to introduce the
fugacity z(r) defined as

z(r)=h−3 F d3p w(r, p) (6.4)
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and k-particle density n(r1,..., rk) given by

n(r1,..., rk)=h−3k F d3p1 · · · d3pk Fk (6.5)

so that n(r) coincides with Eq. (4.28). From Eq. (6.2) we obtain the func-
tional relation between nk and z(r)

n(r1,..., rk)=X−1 D
j ¥ k

z(rj) C
.

m=0

1
m!

F d3rk+1 · · · d3rk+m Wk+m D
i ¥ m

z(ri) (6.6)

and

X= C
.

m=0

1
m!

F d3r1 · · · d3rm Wm D
i ¥ m

z(ri). (6.7)

The functional relation between n1(r) — n(r) and z(r) can be inverted. Then
k-particle density nk is a functional of n(r). Taking into account that velo-
cities are uncorrelated we obtain

F(k)=g(r1,..., rk) D
i ¥ k

F(r1, vi) (6.8)

where

g(r1,..., rk)=
n(r1,..., rk)

n(r1) · · · n(rk)
(6.9)

is the same functional of n(r) as in a nonuniform hard sphere fluid in
equilibrium. (29, 30) Hence, taking F(12)=g(12) F(1) F(2) in Eq. (6.1) we
obtain revised Enskog equation. By taking l=1 in our global and local
H-theorem we obtain the well known proofs of Resibois, (12) Mareschal
et al., (27) and Piasecki. (28) However, as we already noted, our proof allows
general boundary geometry and external potential, which is novel.

7. LINEAR KINETIC THEORY

Let us consider a state of the system close to equilibrium determined
by ceq and Feq. described by T and m

kBTceq(r, v)=Mv2/2+f(r) − m

ceq
n =0 for n > 1.
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We shall denote the deviation from equilibrium by dc and dF

cn=ceq
n +dcn,

Fn=Feq
n +dFn.

We consider only such states that dc and dF are initially localized in
space. Moreover, the average number of particles (2.21) and energy (2.20)
is the same as in equilibrium, hence

F d1 ceq
1 dF1=0. (7.1)

The total momentum is equal to 0. Due to the conservation laws these
properties are preserved during the evolution.

By linearization of relations (4.1) we get dck=0 for k > l so that dFm

is a linear functional of dck, 0 < k [ l This functional is given explicitly by
the integral operator with the kernel Q defined by Eq. (4.19) and calculated
for the equilibrium distribution.

dFm=− C
l

i=1
F di Qeq

mi dc i (7.2)

and the explicit form of Qeq is given by Eq. (A.8) with distribution func-
tions F replaced by equilibrium functions Feq, The BBGKY hierarchy
(3.11) for dF is the same as for F since Feq is its stationary solution, i.e.,

{“t+L̄− (m)} dF(m)

= C
i ¥ m

F d(m+1) Ta− (i, m+1) dF(m+1), t > 0, m=1, 2,... .
(7.3)

Since we need dFl+1 we must invert the functional relation (7.2). The
general methods to determine the inverse functional, i.e., to find an opera-
tor [Qeq]−1 are discussed in ref. 13 and the references therein.

The H-theorem proved by Bławzdziewicz et al. (13) is obtained by
linearization of our general theorem. Taking into account the definition of
entropy (2.19) and the operator Q (4.19) we obtain an expression for the
deviation from equilibrium of the function dS=S − Seq

dS=−dH+o(dc2) (7.4)
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where

dH=1
2 C

l

i, m=1
F di dm dcmQeq

mk dc i. (7.5)

From our H-theorem we get

ddH

dt
=−

ddS
dt

[ 0 (7.6)

and dc as well as dH and must tend to 0.

8. THE CASE l=2

Here we present a set of new kinetic equations satisfying H-theorem
from Section 3. Applying our theorem in the case l=2, we get a closed
dynamics including two-particle correlations, especially velocity correla-
tions. The system may start from any state described by F1 and F2 or c1

and c2. During the time evolution only c1 and c2 are nonzero. The isolated
system eventually will attain its equilibrium according to the initial energy
and mean number of spheres, invariants of motion. Then c2 will tend to
zero and c1 to its equilibrium value.

We can write two first equations of (3.11)

{“t+L0(1)} F(1)=F d2 Ta− (12) F(12)

{“t+L0(12)} F(12)=Ta− (12) F(12)+F d3 (Ta− (13)+Ta− (23)) F(123)

(8.1)

where the free propagation is defined by Eq. (4.21).
To close the hierarchy we should express F3 or F1 and F2 We define

correlation functions Gm by

F(m)=G(m) D
i ¥ m

F(i). (8.2)

It is possible to express G3 in terms of F1 and H2=G2 − 1 in the graphical
way proposed by Morita and Hiroike. (19) One can construct graphs where
white points correspond to 1, black points correspond to > dm F(m) and
lines correspond to H2. Let us consider graphs consisting of three white
points, an arbitrary number of black points and lines ( lines do not connect
white points). To each such graph we assign a symmetry number—the
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Fig. 1. All types of graphs in w3 with one or two black points. The second and the third
graph corresponds to three graphs with different numerations of white points. The last graph
has the symmetry number 2.

number of permutations of black points unchanging the graph. The
integral corresponding to the graph is divided by its symmetry number.
Furthermore we say that a graph is double connected if removing any two
points cannot leave some black points disconnected off white points. We
write G3 in the form

G(123)=G(12) G(13) G(23) exp w(123). (8.3)

Then w3 is a sum of all double connected graphs. Some of them are pre-
sented in Fig. 1. One can for example take the convolution approximation

w(123) 4 F d4 F(4) H(14) H(24) H(34). (8.4)

It is clear that taking equilibrium radial distribution function given by
Eq. (6.9) for G2, namely

F(12)=g(12) F(1) F(2) (8.5)

where 1 — r1, since g depends only on positions 1 and 2, we get

F(m)=g(m) D
i ¥ m

F(i). (8.6)

We can refer the evolution equations to the Enskog equation by writing F2

in the form

F(12)=g(12) F(1) F(2)+H̃(12). (8.7)

The functional F(123 | F1, H̃2) can be represented graphically or by a
Taylor series. It is possible to express w3 from Eq. (8.3) by a sum of double
connected graphs with thick lines h2=g2 − 1 and dashed lines correspond-
ing to h̃(12)=H̃(12)/F(1) F(2) as shown in Fig. 2. The equilibrium corre-
lations occur if no dashed line touches black circle so that we can omit the
integration of F1 over velocity putting n1 instead.
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Fig. 2. Graphs contributing to w3 with one black circle.

Another way is to write F3 in the form

F(123)=g(123) D
3

i=1
F(i)+ C

.

m=1
F

d21 · · · d2m

m!
1 dF(123)

dF(21) · · · dF(2m)
2E

F1

D
m

i=1
H̃(2 i)

(8.8)

where E denotes that the derivative is taken for the Enskog distribution
functions (8.6). The first functional derivative can be evaluated

1dF(123)
dF(45)

2
F1

=Qb
32(123 | 45) (8.9)

where the definition of Qb is found in ref. 18 but here F1 is a nonequilib-
rium distribution. Therefore only equilibrium correlation functions gm,
m=2, 3, 4, 5 are necessary in this approximation. This is a nonlinear
version of Enskog-like renormalization performed in refs. 17 and 18. We
cannot, however, prove an H-theorem for this particular approximation
since it is inconsistent the maximum entropy principle. We suppose that
only a full expansion (8.8) or a linearization of F1 give H-theorem.

The overlap function W(12) and the excluded volume effects of other
particles are then included in g2. The function H̃2 is a correction that
depends also on velocities. Its evolution is obtained from the couple of
Eqs. (8.1) and some auxiliary identities.

The time evolution of g2 is given indirectly by evolution of n1.

“g(12, t)
“t

=F d3r3
dg(12)
dn(3)

“n(3, t)
“t

(8.10)

where

“n(r, t)
“t

=−
“

“r
· u(r) n(r) (8.11)

and local velocity u is defined by

n(r) u(r)=h−3 F d3p vF(r, v). (8.12)
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The functional derivative is evaluated as follows

dg(12)
dn(3)

=h(123) − h(12)(c(13)+c(23)) − F d4 n(4) c(34) h(124) (8.13)

where d4 — d3r4, c2 is a direct two point correlation function (31) defined by
Ornstein–Zernike equation

h(12)=c(12)+F d3 n(3) h(13) c(32), (8.14)

and h3 is defined by

g(123)=1+h(12)+h(23)+h(31)+h(123). (8.15)

We get the final equation in the form

{“t+L̄− (12)} H̃(12)=LA(12)+LB(12)+LC(12) (8.16)

where

LA(12)=Ta− (12) g(12) F(1) F(2) (8.17)

LB(12)=F d3 Ta− (13)(F(123) − g(12) F(2) F(13))+1 Y 2 (8.18)

LC(12)=F(1) F(2) 1F d3
dg(12)
dn(3)

“

“r3
· n(3) u1+2(3)+v21 ·

“g(12)
“r12

2 (8.19)

where

u1+2(3)=u(3) −
v1+v2

2
(8.20)

and

“

“r12
=

1
2
1 “

“r1
−

“

“r2

2 (8.21)

due to the identity

C
2

i=1

“g(12)
“ri

+F d3
“n(3)

“r3

dg(12)
dn(3)

=0. (8.22)
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One may interpret LA, LB, and LC as terms corresponding to the internal
collision, collision with another particle and mean field interaction,
respectively.

9. DISCUSSION

The H-theorem (4.11) is a generalization of ideas of Boltzmann and
Resibois. The isolated hard sphere fluid attains equilibrium determined by
integrals of motion: number of spheres, momentum and energy.

Our theorems contain all previous results and allows to include in the
picture of dynamics more complicated events and correlations. Moreover,
the theorem holds under general boundary geometry and an external
potential. We emphasize that we got the condition that in equilibrium the
chemical potential m is independent of the position but not necessarily the
density n. Therefore coexistence of phases with different densities is pos-
sible. Expressing c by F is hard but in principle possible. (19–21) The corre-
spondence between c and F is not unique at high densities, because corre-
sponding integrals are not convergent. One may think about an analytic
continuation but coexistence of phases must be allowed. The kinetic equa-
tions given in section 6 or linearized theory presented in ref. 8 can be used
especially for the analysis of time correlation functions.

An H theorem holds for every level of truncation l. It is unknown,
however, whether entropy production grows or shrinks with increasing l.
A very interesting question is whether the entropy production tends to a
nonzero value if l Q . or vanishes. Another interesting problem is how to
construct kinetic equations containing ring and repeated ring terms (23, 24)

without breaking H theorem. This is the purpose of authors’ current
research.

APPENDIX A

The fact that Eq. (2.22) gives maximum possible entropy at given
U and N follows from more general maximum entropy formalism. The
purpose of maximum entropy formalism (MEF) (8, 9) is to find such a
probability distribution r with given F1 · · · Fl constrained that entropy is
maximal. This implies that all averages of cluster functions from Eq. (2.10)
with ak=0 for k > l are also constrained including energy (2.20) and
number of particles (2.21). We use the standard variational technique by
introducing a functional

I=S − C
l

m=1
F dm Fmlm (A.1)
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where functions l(m), 0 < m [ l are Lagrange multipliers related to the
constraints. The variational principle requires that for arbitrary variations
of the probability distribution given by a set of dc i, i > 0 we must obtain

dI=0. (A.2)

We have from Eq. (A.1) with (2.19) that

dI= C
l

m=1
F dm(dFm)(cm − lm)+ C

.

m=l+1
F dm(dFm) cm

+dk+ C
.

m=1
F dm(dcm) Fm. (A.3)

Taking into account the normalization condition (2.3), we get

0= C
.

n=0
F dn drn= C

.

n=0
F dn rnd ln r̃n. (A.4)

From Eqs. (2.14) and (2.11), we obtain

dk=− C
.

m=1
F dm Fm dcm (A.5)

or

dk

dcm
=−Fm. (A.6)

Hence, the last two terms in Eq. (A.3) vanish.
We express the variation dF by arbitrary variations dc using defini-

tions (2.4) and (2.14)

dFj=− C
.

i=1
F di Qji dc i (A.7)

where the kernel Qji is defined by Eq. (4.19) Explicit calculation of the
kernel gives

Q(i | j)=F(i+j) − F(i) F( j)+ C
m ı i
mŒ ı j

d(m − mŒ)
m!

F(i+j − m) (A.8)
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where the sum is taken over all sequences of m elements from the sets i
and j. The operator Q defines bilinear form for functions a={a(n), n > 0}
and b={b(n), n > 0}

C
i, j

F di dj aiQijbj= C
k, l, m

F dk dl dm[Fk+l+m − dm, 0FkFl] ak+mbl+m. (A.9)

This form is symmetric, positive definite and invertible for non-overlapping
configurations since

C
i, j

F di dj aiQijaj=O(A−OAP)2P > 0, (A.10)

A(n)= C
m ı n

a(m). (A.11)

Therefore dFm for m > 0 can take an arbitrary value and lastly

cm=˛lm for m [ l,

0 otherwise.
(A.12)

To find maximum entropy at given average energy and number of particles
one must take lk=0 for k > 1 and

l1=A(f(r1)+p2
1/2M)+B (A.13)

where A and B are arbitrary constants (Lagrange multipliers). Since
maximum entropy is obtained for c1=−l1, we identify kBTA=−1 and
kBTB=m in Eq. (2.22).

APPENDIX B

To derive Eq. (4.4) we start with integration by parts

− C
l

m=1
F dm cm C

i ¥ m
vi ·

“Fm

“ri
= C

l

m=1
F dm Fm C

i ¥ m
vi ·

“cm

“ri
− F dm

“

“ri
· (viFmcm).

(B.1)

From Eqs. (2.1) and (2.11) for A given by (2.10) with

am= C
i ¥ m

vi ·
“cm

“ri
(B.2)
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and from Eq. (2.14) we have

C
l

m=1
F dm Fm C

i ¥ m
vi ·

“cm

“ri

=− C
.

n=1
F dn Wn r̃n C

i ¥ n

vi ·
“ ln r̃n

“ri
=− C

.

n=1
F dn Wn C

i ¥ n

vi ·
“r̃n

“ri

= C
.

n=2
F dn C

i ¥ n
vi ·

“Wn

“ri
r̃n − C

.

n=1
F dn C

i ¥ n

“

“ri
· (virn)

= C
.

n=2
F dn C

i ] j
vi ·

“W(ij)
“ri

r̃n D
(pq) ] (ij)

W(pq) − F d1
“

“r1
· (v1F1). (B.3)

Next

C
.

n=2
F dn C

i ] j
vi ·

“W(ij)
“ri

r̃n D
(pq) ] (ij)

W(pq)= C
.

n=2
F dn C

i ] j
d(rij − d+) vi · r̂ijrn

=F d2 d(r12 − d+) v12 · r̂12F2 (B.4)

where we have used the relation

“W(ij)
“ri

=d(rij − d) r̂ij (B.5)

and replaced d by d+ to write rn instead r̃n.
The boundary terms

F d1
“

“r1
· (v1F1) and C

m > 0
F dm C

i ¥ m

“

“ri
· (vicmFm) (B.6)

in Eqs. (B.1) and (B.3), respectively are equal to zero for an isolated system.
For such a system, when ri is at the boundary then Fm and cm must be even
functions of vi + (the component of vi perpendicular to the boundary).

The right hand side of (4.7) can be written in terms of r if we simply
use Eq. (2.4)

C
l+1

m=2
F dm Fm C

i > j
T+(ij){c(m)+c(m − i)+c(m − j)}

= C
.

n=0
C
l+1

m=2
F dm dn rn+m C

i > j
ij ¥ m

T+(ij){c(m)+c(m − i)+c(m − j)}.
(B.7)
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By the symmetry of rn we can distribute the combinatorial factor (n
m) into

all subsets m of n. We get

C
.

n=2
F dn rn C

l+1

m=2
C

m ı n

C
i > j

ij ¥ m

T+(ij){c(m)+c(m − i)+c(m − j)}. (B.8)

Finally we take into account that T+(ij) does not affect cm(m) if
m 5 {ij}=”. Lastly, we obtain

C
.

n=2
F dn rn C

i > j
T+(ij) C

m ı n
c(m) (B.9)

and use the definitions (2.14) and (3.18).

APPENDIX C

We shall evaluate the right hand side of Eq. (4.20), using Eqs. (2.4),
(4.19), and (3.16)

C
m > 0

F dm Qkm L0, mcm=− C
m > 0

F dm
dFk

dcm
L0, mcm

=− C
m > 0

C
.

n=0
F dn dm Wk+n

dr̃k+n

dcm
L0, mcm

=− C
.

n=0
F dn Wk+n L0, k+n r̃k+n

=− C
.

n=0
F dn Wk+n Lk+n r̃k+n

=− C
.

n=0
F dn L̄k+nrk+n (C.1)

where we have taken into account that T− (ij) rn=0 due to Eq. (4.17) The
last expression coincides with Eq. (3.11).

To prove Eq. (4.27) we need only Eqs. (3.2) and (4.26). Let us apply
tensor operator

“
2

“v1 “v2
(C.2)
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to both sides of Eq. (4.26), i.e.,

c(r1, v1)+c(r2, v2)=c(r1, v −

1)+c(r2, v −

2), |r1 − r2 |=d (C.3)

where v −

1 and v −

2 are related to v1 and v2 by the elastic collision law (3.2).
We get

R̂ 1 R̂ ·
“

2c(r1, v −

1)
“v −

1 “v −

1

2− R̂R̂ 1 R̂R̂ :
“

2c(r1, v −

1)
“v −

1 “v −

1

2

+R̂ 1 R̂ ·
“

2c(r2, v −

2)
“v −

2 “v −

2

2− R̂R̂ 1 R̂R̂ :
“

2c(r2, v −

2)
“v −

2 “v −

2

2=0 (C.4)

where R=r2 − r1 and R̂=R/d. Taking v −

1 and v −

2 as independent variables
we obtain

R̂ ·
“

2c(r, v)
“v “v

− R̂ 1 R̂R̂ :
“

2c(r, v)
“v “v

2=g(r, R̂) (C.5)

for every v, r, and R̂, where g is an arbitrary vector function. Let us choose
such a reference system xyz that R̂=(1, 0, 0). Then taking y component of
the above equation we have

“
2c(r, v)

“vx “vy
=gy(r). (C.6)

Hence

c(r, v)=gyvyvx+fa(r, vx, vz)+fb(r, vy, vz) (C.7)

where fa and fb are arbitrary functions. Repeating this reasoning for z we
arrive at

c(r, v)=fc(r, vx)+fd(r, vy, vz) (C.8)

and gy=gz=0. This is true in every possible reference system. If we turn
coordinates vz and vx by an angle f around the axis vy in the way

vg
z =vz cos f − vx sin f, vg

x =vx cos f+vz sin f (C.9)

then

fc(r, vx)+fd(r, vy, vz)=fg
c (r, vg

x )+fg
d (r, vy, vg

z ). (C.10)
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Applying “
2/“vx “vz to this equation, we get

sin f cos f 1“
2fg

c

“vg 2
x

−
“

2fg
d

“vg 2
z

2=0. (C.11)

Renaming the variables we arrive at

fc=a(r) v2
x+bx(r) vx+c1(r), fd=a(r) v2

z +h(r, vy) vz+c2(r, vy)
(C.12)

where a, bx, h, c1, and c2 are arbitrary functions. Finally, taking into
account invariance under rotations around axes vx and vz, we obtain

c(r, v)=a(r) v2+b(r) · v+f(r) (C.13)

where a, b, and f are arbitrary functions of r.
We use again Eq. (4.26) and get

(v12 · R̂)[a(r1) − a(r2)](v1+v2) · R̂+[b(r1) − b(r2)] · R̂(R̂ · v12)=0 (C.14)

for every v1, v2, r1, and R̂. Hence a(r1)=a(r2)=a and

b(r) · R̂=b(r+dR̂) · R̂. (C.15)

We apply now operator

1 R̂ ×
“

“R̂
22

=−2R̂ ·
“

“R̂
+1 “

“R̂
22

− R̂R̂ :
“

2

“R̂ “R̂
(C.16)

to Eq. (C.15). We obtain

0=2
“

“r
· b − 4R̂R̂ :

“b
“r

+1 “

“r
22

b · R −1 R̂ ·
“

“r
22

b · R (C.17)

at r+R. By the change R̂ Q− R̂ we get

0=
“

“r
· b − 2R̂R̂ :

“b
“r

. (C.18)
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Due to the arbitrariness of the direction R̂ the symmetric part of “b/“r is
zero, namely

“bx

“x
=

“by

“y
=

“bz

“z
=0, (C.19)

“bx

“y
+

“by

“x
=

“by

“z
+

“bz

“y
=

“bz

“x
+

“bx

“z
=0. (C.20)

It follows that bx=bx(y, z), by=by(x, z), and bz=bz(x, y) From
Eq. (C.20) we get

“by

“x
=−

“bx

“y
=cz(z) (C.21)

where cz is an arbitrary function. Hence

bx=−cz(z) y+fa(z), by=cz(z) x+fb(z) (C.22)

where fa and fb are arbitrary functions and using

“bz

“y
=−

“by

“z
=cx(x),

“bx

“z
=−

“bz

“x
=cy(y) (C.23)

where cx and cy are arbitrary functions we finally arrive at

b(r)=b0+c × r (C.24)

where b0, c are constants. Lastly,

c(r, v)=av2+b · v+c × r+f(r) (C.25)

where a, b, and c are constants and f is an arbitrary function of r.

APPENDIX D

To find the function B we use Eqs. (2.1), (2.11) for A given by (2.10)
with

am= C
i ¥ m

d(r − ri)
“f(ri)

“ri
·
“cm

“pi
(D.1)
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and Eq. (2.14) in the identity

0=− C
.

n=1
F dn C

i ¥ n
d(r − ri)

“f(ri)
“ri

·
“rn

“pi

= C
.

n=1
F dn C

i ¥ n
d(r − ri)

“f(ri)
“ri

· C
m ı n

“c(m)
“pi

rn

= C
m > 0

F dm C
i ¥ m

d(r − ri)
“f(ri)

“ri
·
“cm

“pi
Fm

=− C
m > 0

F dm C
i ¥ m

d(r − ri)
“f(ri)

“ri
·
“Fm

“pi
cm. (D.2)

To find function C, Js, and sC we use the identity

0= C
.

n=1
F dn C

i ¥ n

“

“ri
· vi d(r − ri) rn

=−
“

“r
· C

.

n=1
F dn C

i ¥ n

vi d(r − ri) rn

+ C
.

n=1
F dn C

i ¥ n
d(r − ri) vi ·1 r̃n

“Wn

“ri
+Wn

“r̃n

“ri

2

=−
“

“r
· F dŒ1 v1F1+F d2 C

i ] j
d(r − ri) vi ·

“W(ij)
“ri

F2

− C
m > 0

F dm Fm C
i ¥ m

d(r − ri) vi ·
“cm

“ri
(D.3)

and

− C
m > 0

F dm Fm C
i ¥ m

d(r − ri) vi ·
“cm

“ri

=−
“

“r
· C

m > 0
F dm Fmcm C

i ¥ m
vi d(r − ri)+ C

m > 0
F dm cm C

i ¥ m
d(r − ri) vi ·

“Fm

“ri
.

(D.4)
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